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SYNOPSIS 

The ethyl-cyanoethyl cellulose [ (E-CE)C]/poly (acrylic acid) [PAA] composites were pre- 
pared via in situ photopolymerization of the (E-CE)C/acrylic acid (AA) solutions, in which 
the morphology and structure of (E-CE)C was retained as the same as that in the solution. 
The strength and the modulus of the composites depended on their morphology and struc- 
ture. The strength of the composites with a completely amorphous state or with a completely 
cholesteric order did not significantly change with increasing (E-CE)C content, although 
the strength of the composites with completely cholesteric order is much higher than with 
the completely amorphous state. However, when the (E-CE)C content changed from 33.8% 
to 42.5%, in which the composites had both cholesteric order and amorphous phases, the 
strength of the composites greatly increased with increasing (E-CE)C. The elastic modulus 
of the composites with completely isotropic structure decreases with increasing (E-CE)C 
content but abruptly increases with increasing the fraction of cholesteric phase in the 
composites. The (E-CE)C with cholesteric order had a significant enhancing effect on the 
strength of the composites. The stress-strain curves indicated that the composites with 
completely amorphous or completely cholesteric order were breakable, while they were 
tough in the case when they had both cholesteric and amorphous phases. 0 1995 John Wiley 
& Sons, Inc. 

I NTRO DUCT ION 

In the past decade, many studies focusing on the 
preparation of molecular composites, containing 
coiled polymers and rigid polymers via in situ po- 
lymerization have been The rod-like 
polymer /coiled polymer composites with meso- 
morphic structure can be prepared by polymerizing 
the vinyl monomer in the rigid polymer/vinyl 
monomer liquid crystalline solution. Although the 
preparation, morphology, structure, and optical 
characteristics of the composites with liquid crys- 
talline structure have been reported, the mechanical 
properties and the relationship between the me- 
chanical properties and the structure have rarely 
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been discussed. It is always an attractive subject to 
use liquid crystalline material to make materials 
with high strength, or to enhance other polymer 
 material^.^ 

Since cholesteric liquid crystals were observed in 
the hydroxypropyl cellulose /water system by Wer- 
boyj and Gray,8 it has been found that cellulose and 
many of its derivatives can form liquid crystals under 
appropriate conditions, and cellulose derivative / 
random-coiled polymer composites with cholesteric 
structure have been obtained by polymerization of 
vinyl monomer in the cellulose derivative /vinyl 
monomer  solution^.^-^^^ Because cellulose is an 
abundant reproducible natural polymer, it is of in- 
terest to prepare a cellulose derivative/synthetic 
polymer composite that has a mesomorphic struc- 
ture with good mechanical properties. 

The formation of the (E-CE) C/acrylic acid (AA) 
cholesteric liquid crystalline solutions and the free 
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radical polymerization of AA in (E-CE) C/AA so- 
lutions have been reported.6," The (E-CE) C/po- 
lyacrylic acid ( PAA) composites with cholesteric 
structure have been prepared by photopolymeriza- 
tion. In this article, the effects of the cholesteric 
order on mechanical properties are discussed. 

EXPER I M E NTAL 

Raw Materials 

The ethyl-cyanoethyl cellulose [ (E-CE) C] was ob- 
tained by the reaction of ethyl cellulose and acry- 
lonitrile. The degree of substitution for ethyl was 
2.1, and for cyanoethyl, was about 0.43. The molec- 
ular weight, M,, of (E-CE) C, measured by gel per- 
meation chromatography (GPC) (HPLC, Waters- 
209), was 7 X lo4. The molecular formula of (E- 
CE) C is as follows: j-J-ooo(-J- 

OR CH20R OR 

The acrylic acid ( AA) was a chemically pure reagent 
and was distilled in vacuum before using. 

Preparation of the Composites 

(E-CE) C/AA solutions for polymerization were 
prepared in glass vials by weighing the desired 
amount of (E-CE) C, AA and 2 wt % initiator (with 
respect to the solvent AA) , benzoin ethyl ether, into 
a vial and mechanically mixing with a spatula for 
several minutes. The mixtures were allowed to sit 
for 1 more week, and the resulting homogeneous and 
transparent solutions were then stored in the dark 
until used. The solution was put into the mold de- 
scribed in Figure 1, then it was sandwiched with two 
glass slides. After being stored quietly for 2 h, the 
sample was inserted into the ultraviolet chamber 
equipped with a 250 W high-intensity mercury arc 
lamp until completely polymerized. 

Measurement 

The tensile testing of (E-CE)C/PAA composites 
was conducted with a tensile tester (MONSANTO 
P-10, USA). The samples were equilibrated in an 

L=110 mm, C=36 i0.5 mm, b = 6.5 kO.1 mm w = 25 mm, 
G = 25 kO.2 mm, H = 76 mm, d =  0.30 mm, R1= 14, R2 = 25 

Figure 1 
of mechanical properties of composites. 

The specimen mold used for the measurement 

environment, in which the temperature was 25°C 
and the relative humidity was 80%, for 48 h before 
measurement. The stretch speed was 5 mm/min. 
The broken sections of the composites were observed 
by using a scanning electron microscope ( SEM) (S- 
430, Hitachi, Japan). The phase structure of the 
composite sections were observed by a transmission 
electron microscope (TEM) ( JEOL-lOOCX/II, 
Japan ) . 

RESULTS AND DISCUSSION 

The mechanical properties of polymer blends are 
greatly affected by their morphology and structure. 
(E-CE) C can be dissolved in AA and forms choles- 
teric liquid crystals when its concentration is over 
a critical value." The (E-CE) C/PAA composites 
prepared from the solution by photopolymerization 
retain the original morphology and structure of so- 
lutiom6 Hence, the composites with different (E- 
CE) C contents have different morphologies and 
structures, which may influence their mechanical 
properties. Figure 2 shows the ultimate tensile 
strength of the photopolymerized (E-CE) C/PAA 
composites as a function of the (E-CE) C content. 
According to the (E-CE)C content, the curve can 
be divided into three parts: ( a )  when (E-CE) C con- 
tent is less than about 3496, the ultimate tensile 
strength is almost unchanged with increasing (E- 
CE)C content; ( b )  when the (E-CE)C content is 
in the region between about 34-42.5%, the ultimate 
tensile strength abruptly increases with increasing 
(E-CE) C content. In this narrow region, the tensile 
ultimate strength increases from 22 MPa to 67 MPa, 
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Figure 2 
(E-CE)C content for (E-CE)C/PAA composites. 

Ultimate tensile strength as a function of the 

or about threefold; (c )  when the (E-CE) C content 
is over 42.5%, the ultimate tensile strength increases 
with increasing (E-CE)C content, but the rate of 
increase is much lower than that in region ( b )  . 

The cholesteric liquid crystalline phase in the (E- 
CE)C/AA solution begins to appear a t  the concen- 
tration of 33.8 wt %. At this time, the mesophase 
and the isotropic phase coexist in the solutions that 
are biphasic. When the (E-CE) C concentration is 
above 42.5 wt %, the solutions are completely an- 
isotropic. The morphology and structure of the so- 
lutions can be retained in the (E-CE) C/PAA com- 
posites, which are prepared by photopolymerization 
with a high rate of polymerization.6 Hence, the (E- 
CE)C/PAA composites with (E-CE)C less than 
33.8% are isotropic and those with (E-CE ) C content 
between 33.8-42.5% are biphasic. Those with (E- 
CE) C above 42.5% are completely anisotropic. From 
the variation of the ultimate tensile strength of ( E -  

Figure 3 
(E-CE)C/PAA composite with 45 wt % (E-CE)C. 

The transmission electron micrograph of the 
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(E-CEIC (%I 
Figure 4 
and the (E-CE)C content of (E-CE)C/PAA composites. 

The relationship between the elastic modulus 

CE)C/PAA composites with (E-CE)C content, it 
can be concluded that the changes in the ultimate 
tensile strength correspond to the variation of the 
structure and morphology of the composites. That 
is, in region (a ) ,  the (E-CE)C/PAA composites 
with (E-CE)C content less than 33.8% are com- 
pletely amorphous. The (E-CE) C in the composites 
does not act as an enhancing element and, therefore, 
the ultimate tensile strength of the composites does 
not change significantly with an increase in (E- 
CE) C. In region (b)  , there exist both the amorphous 
phase and cholesteric order in the composites. With 
increasing (E-CE)C content, the ratio of the cho- 
lesteric liquid crystalline phase to the amorphous 
one increases rapidly until the system becomes 
completely cholesteric at the end of region ( b )  . It 
is clear that composites with cholesteric order have 
much higher strength than those with amorphous 
structure, and the ultimate tensile strength of the 
composite increases with increasing cholesteric or- 
der in composites. Because the ratio of the fraction 
with cholesteric order to that with amorphous 
structure increases rapidly with (E-CE) C content 
in region (b)  , the ultimate strength rapidly increases 
with increasing (E-CE) C content in composites. In 
region (c )  , the system shows completely cholesteric 
order. The structure of the composites does not 
change with increasing (E-CE) C content in region 
(c) .  The strength of composites increases very 
slightly with increasing (E-CE ) C. It is suggested 
that the strength increment of (E-CE)C/PAA 
composites is attributed to the cholesteric order in 
the composites. 

The elastic moduli of typical composite materials 
can be calculated from the following two equations7 : 

low limit: E, = E1E2/ (E1V2  + E2Vl)  (1) 

( 2 )  high limit: E, = E1V1 + E2V2 
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Where E,  is the modulus of the composites, V, 
and V2 are the volume fractions of the two com- 
ponents, El and E2 are the moduli of the two com- 
ponents. Equation (1) can be used in the case 
where the stresses are the same in the two phases 
when the sample is stretched, such as in a com- 
posite with spherular phases. Equation ( 2 )  can be 
used in cases where the strain is the same in the 
two components, which can often be observed in 
molecular composites or composites with a fiber 
phase. Figure 3 shows the transmission electron 
micrograph of the (E-CE) C /PAA composite with 
cholesteric structure. The composite shows a la- 
mellar structure extending over the whole speci- 
men. It has been confirmed that lamellation in 
composites originates from the cholesteric struc- 

ture.6 DSC measurements show that the compos- 
ites give one Tgr which confirms that the (E-  
CE) C/PAA composites prepared by photopoly- 
merization are homogeneous, and eq. ( 2 )  may be 
adopted for calculation of E,.  

Figure 4 presents the variation of the elastic 
modulus of (E-CE ) C / PAA composites with (E- 
CE) C content. Similar to the variation of the ulti- 
mate tensile strength with (E-CE) C content, there 
are three parts in the curve, and the relationship 
between elastic modulus and (E-CE) C content is 
linear in each region. It is clear that both eqs. (1) 
and ( 2 )  cannot describe the variation of the modulus 
with (E-CE)C content in Figure 4. However, the 
moduli of the composites in each region can be mod- 
eled by eq. ( 2 ) .  

Figure 5 
been stretched, (E-CE)C content is (a) 15%, (b) 35%, (c) 37.5%, (d) 42.5%, and (e) 55%. 

Scanning electron micrographs of the broken sections of composites that have 
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Figure 6 The relationship between the ultimate elon- 
gation and the (E-CE)C content of (E-CE)C/PAA com- 
posites. 

In region ( a ) ,  the elastic modulus decreases with 
increasing (E-CE ) C. In regions ( b )  and (c  ) , how- 
ever, it increases with increasing (E-CE ) C, although 
the slope of the straight line in region (c  ) is smaller 
than that in region ( b )  . The variation of the elastic 
modulus with (E-CE) C content suggests that the 
(E-CE ) C with isotropic structure lowers the elastic 
modulus of the composites. However, the (E-CE) C 
with cholesteric liquid crystalline order increases the 
modulus of the composites. This means that the 
modulus decreases with increasing (E-CE) C in the 
(E-CE) C/PAA composites with completely isotro- 
pic structure, while, when cholesteric order appears 
in the composites after the (E-CE) C content is more 
than 33.8%, the modulus of the composites abruptly 
increases with increasing the fraction of cholesteric 
order. Consequently, it can be concluded that the 
increment of the elastic modulus for (E-CE)C/PAA 
composites is attributed to the cholesteric order in 
composites. In region ( c ) ,  there is no isotropic 
structure in the composites and the increase of the 
elastic modulus for the composites is slowed. 

Figure 5 shows the SEM micrographs of the bro- 
ken sections of the composites that have been 
stretched. The lamellar structure, which is parallel 
to the composite plane, can be observed in the com- 
posites with cholesteric structure and cannot be ob- 
served in those with amorphous structure. It is clear 
that the (E-CE)C/PAA composites with this kind 
of orienting structure have high modulus and ulti- 
mate tensile strength. 

Figure 6 shows the relationship between the ul- 
timate elongation and the (E-CE) C content of (E- 
CE)C/PAA composites. PAA is a brittle polymer. 
When the (E-CE)C content is low, the ultimate 
elongation increases slightly with the increasing ( E- 
CE) C content, but when the (E-CE) C content is 

just over the critical value to form mesophase, the 
ultimate elongation abruptly increases with in- 
creasing (E-CE ) C content. This phenomenon can- 
not be explained only by the increase of the (E- 
CE) C content, but it can be related to the structural 
changes of composites. Figure 7 shows the stress- 
strain curves of the (E-CE) C/PAA composites. The 
composites with different (E-CE) C content have 
different tensile properties. In region ( a ) ,  the (E- 
CE) C content is low, the composites are brittle. In 
region ( b ) ,  both amorphous structure and choles- 
teric order coexist in the composites; the composites 
have some toughness, and yield occurs when the 
composites are stretched. In this region, the com- 
posites show larger ultimate elongation. In general, 
the occurrence of yield is the result of molecular 
reorientation during deformation. When the com- 
posites are stretched, the (E-CE) C with cholesteric 
order may act as a nucleus to induce orientation of 
the (E-CE) C with amorphous structure, which leads 
to increasing the ultimate elongation, and the (E- 
CE) C/PAA composites become tough. When the 
(E-CE) C increases continuously, the (E-CE) C with 
cholesteric order increases, which results in increas- 
ing the degree of induced orientation and the com- 
posites become tougher with high ultimate elonga- 
tion. However, when most of the (E-CE) C exists in 
the cholesteric state, the (E-CE) C that can be ori- 
ented becomes smaller and the degree of induced 
orientation is low for such composites. Therefore, 
the toughness of the composites decreases. Figure 6 
shows that the composites have maximum ultimate 
elongation when the (E-CE) C content is about 35% 
in region ( b )  , and Figure 7 shows that the compos- 
ites are tough when the (E-CE) C content is located 
in region ( b )  . When the amorphous structure in (E- 
CE ) C / PAA composites completely disappears, the 
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ultimate elongation decreases slightly with increas- 
ing (E-CE) C content and the composites are brittle 
when the (E-CE) C content is located in region (c )  . 

CONCLUSIONS 

The mechanical properties of (E-CE) C/PAA com- 
posites are mainly influenced by their structure. 
When the (E-CE)C content changes from 33% to 
42.5%, the structure in the composites changes from 
the amorphous state to the cholesteric and the ul- 
timate tensile strength of the composites increases 
from 22 MPa to 67 MPa. When the (E-CE)C con- 
tent is less than 33%, the (E-CE) C/PAA compos- 
ites are a completely isotropic system. When the 
(E-CE) C content is above 42.5 wt %, the (E-CE) C/ 
PAA composites are systems with completely cho- 
lesteric liquid crystalline order and the variation of 
the (E-CE) C content has no significant influence 
on the composite strength. The elastic modulus of 
the composites with completely isotropic structure 
decreases with increasing (E-CE) C content but in- 
creases abruptly with increasing fraction of the cho- 
lesteric order in the composites. The (E-CE) C/PAA 
composites with both amorphous structure and cho- 
lesteric order are tough, and yield occurs when they 
are stretched. The ultimate elongation of the com- 
posites is a t  a maximum with 35% (E-CE)C. The 

composites with completely amorphous structure or 
completely cholesteric order are brittle. 
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